Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ InTecharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
InTech
Part of book or chapter of book . 2019
Data sources: InTech
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5772/intech...
Part of book or chapter of book . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.intechopen.com/cit...
Part of book or chapter of book
License: CC BY
Data sources: UnpayWall
https://dx.doi.org/10.60692/18...
Other literature type . 2019
Data sources: Datacite
https://dx.doi.org/10.60692/51...
Other literature type . 2019
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distributed Optimization of Multi-Robot Motion with Time-Energy Criterion

التحسين الموزع للحركة متعددة الروبوتات مع معيار الوقت والطاقة
Authors: Mohamad T. Shahab; Moustafa Elshafei;

Distributed Optimization of Multi-Robot Motion with Time-Energy Criterion

Abstract

Cet article est une application d'un cas particulier de problème d'optimisation distribuée. Il est appliqué à l'optimisation du mouvement de plusieurs systèmes robotiques. Le problème est décomposé en L sous-problèmes, L étant le nombre de systèmes robotiques. Cette décomposition réduit le problème à la résolution d'un seul problème robotique. Le problème d'optimisation est résolu via un algorithme distribué, en utilisant la méthode des sous-gradés. Une fonction d'objectif globale est définie comme la somme des objectifs individuels du robot en temps et en énergie. Les contraintes sont divisées en deux ensembles, à savoir les contraintes robot-individuel et les contraintes d'interactions (collision) des robots. L'approche est appliquée au cas des robots mobiles à roues : nous sommes en mesure de générer en parallèle pour chaque robot une trajectoire d'entrée de contrôle optimisée, puis de l'illustrer dans des exemples de simulation.

Este documento es una aplicación de un caso especial de problema de optimización distribuida. Se aplica para optimizar el movimiento de múltiples sistemas de robots. El problema se descompone en L subproblemas, siendo L el número de sistemas de robots. Esta descomposición reduce el problema a la resolución de un solo problema de robot. El problema de optimización se resuelve a través de un algoritmo distribuido, utilizando un método de subgradiente. Una función objetivo global se establece como la suma de los objetivos individuales del robot en tiempo y energía. Las restricciones se dividen en dos conjuntos, a saber, restricciones individuales del robot y restricciones de interacciones (colisiones) de los robots. El enfoque se aplica para el caso de robots móviles con ruedas: podemos generar en paralelo para cada robot una trayectoria de entrada de control optimizada y luego ilustrarla en ejemplos de simulación.

This paper is an application of a special case of distributed optimization problem.It is applied on optimizing the motion of multiple robot systems.The problem is decomposed into L subproblems with L being the number of robot systems.This decomposition reduces the problem to solving a single robot problem.The optimization problem is solved via a distributed algorithm, utilizing subgradient method.A global objective function is set as the sum of individual robot objectives in time and energy.Constraints are divided into two sets, namely, robot-individual constraints and robots' interactions (collision) constraints.The approach is applied for the case of wheeled mobile robots: we are able to generate in parallel for each robot an optimized control input trajectory and then illustrate it in simulation examples.

هذه الورقة هي تطبيق لحالة خاصة من مشكلة التحسين الموزعة. يتم تطبيقها على تحسين حركة أنظمة الروبوت المتعددة. يتم تحليل المشكلة إلى مشاكل فرعية L مع L هو عدد أنظمة الروبوت. هذا التحلل يقلل من مشكلة حل مشكلة روبوت واحد. يتم حل مشكلة التحسين عبر خوارزمية موزعة، باستخدام طريقة التدرج الفرعي. يتم تعيين وظيفة الهدف العالمي كمجموع أهداف الروبوت الفردية في الوقت والطاقة. وتنقسم القيود إلى مجموعتين، وهما القيود الفردية للروبوت وقيود تفاعلات الروبوتات (التصادم). يتم تطبيق النهج على حالة الروبوتات المتنقلة ذات العجلات: نحن قادرون على توليد مسار إدخال تحكم محسّن بالتوازي لكل روبوت ثم توضيحه في أمثلة المحاكاة.

Keywords

Artificial intelligence, Computer Networks and Communications, Robot, Astronomy, Trajectory, FOS: Mechanical engineering, Set (abstract data type), Sampling-Based Motion Planning Algorithms, Engineering, Distributed Multi-Agent Coordination and Control, Distributed Optimization, Self-Reconfigurable Robotic Systems and Modular Robotics, Mobile robot, FOS: Mathematics, Optimization problem, Biology, Real-Time Planning, Subgradient method, Decomposition, Ecology, Mechanical Engineering, Physics, Mathematical optimization, Statistics, Distributed Control, Computer science, Optimal Motion Planning, Programming language, FOS: Biological sciences, Computer Science, Physical Sciences, Motion planning, Computer Vision and Pattern Recognition, Energy (signal processing), Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
Green
hybrid