Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of Biomedical...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Annals of Biomedical Engineering
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY NC ND
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Female and Combined Male–Female Injury Risk Functions for the Anterior Pelvis Under Frontal Lap Belt Loading Conditions

Authors: Connor Hanggi; Joon Seok Kong; James Caldwell; Bronislaw Gepner; Martin Ӧstling; Jason R. Kerrigan;

Female and Combined Male–Female Injury Risk Functions for the Anterior Pelvis Under Frontal Lap Belt Loading Conditions

Abstract

Abstract Purpose Iliac wing fractures due to lap belt loading have been observed in laboratory settings for 50 years and recent data suggest they are also occurring in the field. Automated driving systems (ADS) and other occupant compartment advancements are expected to offer enhanced flexibility in seating orientation, which could place a greater reliance on the seatbelt to restrain occupants. Such changes may increase seatbelt loads and create new challenges in successfully restraining occupants and mitigating injury to areas, such as the pelvis. Injury criteria exist for component-level male iliac wing fractures resulting from frontal lap belt loading, but not for females. Methods This study explored female iliac wing fracture tolerance in the same loading environment as a previous study that explored the fracture tolerance of isolated male iliac wings. Male and female fracture data were combined to evaluate the effect of sex. Injury risk functions were created by fitting Weibull survival models to data that integrated censored and exact failure observations. Results Twenty female iliac wings were tested; fourteen of them sustained fracture with known failure forces (exact), but the remaining six wings either (1) did not fracture or (2) fractured after an event that changed the boundary conditions (right-censored). The fracture tolerance of the tested specimens ranged widely (1134–8759 N) and averaged 4240 N (SD 2516 N). Conclusion Female data and combined male–female data were analyzed. Age was the only covariate investigated in this study that had a statistically significant effect and improved the predictive performance of the models.

Keywords

Biological Physics (physics.bio-ph), FOS: Biological sciences, FOS: Physical sciences, Quantitative Biology - Tissues and Organs, Physics - Biological Physics, Medical Physics (physics.med-ph), Tissues and Organs (q-bio.TO), Physics - Medical Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid