Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dl.acm.org/d...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polylogarithmic approximation for Euler genus on bounded degree graphs

Authors: Ken-ichi Kawarabayashi; Anastasios Sidiropoulos;

Polylogarithmic approximation for Euler genus on bounded degree graphs

Abstract

Computing the Euler genus of a graph is a fundamental problem in algorithmic graph theory. It has been shown to be NP-hard by [Thomassen ’89, Thomassen ’97], even for cubic graphs, and a linear-time fixed-parameter algorithm has been obtained by [Mohar ’99]. Despite extensive study, the approximability of the Euler genus remains wide open. While the existence of an O(1)-approximation is not ruled out, the currently best-known upper bound is a O(n1−α)-approximation, for some universal constant α>0 [Kawarabayashi and Sidiropoulos 2017]. We present an O(log2.5n)-approximation polynomial time algorithm for this problem on graphs of bounded degree. Prior to our work, the best known result on graphs of bounded degree was a nΩ(1)-approximation [Chekuri and Sidiropoulos 2013]. As an immediate corollary, we also obtain improved approximation algorithms for the crossing number problem and for the minimum vertex planarization problem, on graphs of bounded degree. Specifically, we obtain a polynomial-time O(2 log3.5n)-approximation algorithm for the minimum vertex planarization problem, on graphs of maximum degree . Moreover we obtain an algorithm which given a graph of crossing number k, computes a drawing with at most k2 logO(1)n crossings in polynomial time. This also implies a n1/2 logO(1)n-approximation polynomial time algorithm. The previously best-known result is a polynomial time algorithm that computes a drawing with k10 logO(1) crossings, which implies a n9/10logO(1)n-approximation algorithm [Chuzhoy 2011].

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
bronze