Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Florid...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Resuscitation
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Resuscitation
Article . 2003
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Resuscitation of hemorrhagic shock attenuates intrapulmonary nitric oxide formation

Authors: Department of Anesthesiology at Mackay Memorial Hospital, Taipei, Taiwan, ROC ( host institution ); Huang, Chun-Jen ( author ); Wood, Charles E ( author ); Nasiroglu, Omer ( author ); Slovin, Paul N ( author ); Fang, Xiaoying ( author ); Skimming, Jeffrey W ( author );

Resuscitation of hemorrhagic shock attenuates intrapulmonary nitric oxide formation

Abstract

Hemorrhagic shock has been shown to upregulate intrapulmonary inducible nitric oxide (NO) synthase (iNOS) expression. Increased intrapulmonary iNOS expression is reflected by increases in concentrations of NO in the airways. The purpose of this study was to examine the effects of resuscitation on this induction of intrapulmonary NO formation caused by hemorrhage. Eighteen rats were randomized to one of three groups. One group of rats was simply sham-instrumented and monitored. Two other groups experienced hemorrhagic shock (mean systemic blood pressure of 40-45 mmHg) for 60 min. In one of the hemorrhagic shock groups, resuscitation was performed by re-infusing the shed blood and supplementing it with normal saline. Compared with sham-instrumented rats, those exposed to hemorrhagic shock without subsequent resuscitation exhibited a 10-fold increase in exhaled NO concentrations. Additionally, concentrations of both intrapulmonary iNOS protein and mRNA increased. Resuscitation attenuated the hemorrhage-induced upregulation of exhaled NO, iNOS protein and iNOS mRNA. This data suggests that resuscitation attenuates the hemorrhagic shock-induced formation of intrapulmonary NO by downregulating iNOS transcription. We believe that exhaled NO concentrations provide a useful, non-invasive method of monitoring the intrapulmonary inflammatory sequelae of hemorrhagic shock.

Keywords

Male, Sangue, Resuscitation, Immunoblotting, Molecular Sequence Data, Down-Regulation, Nitric Oxide, Rats, Sprague-Dawley, Random Allocation, Reference Values, Animals, Choque, RNA, Messenger, Oxido nı́trico, Lung, Probability, Resucitación, Analysis of Variance, Reanimação, Base Sequence, Sangre, Nitric oxide, Shock, Rats, Disease Models, Animal, Blood, Óxido Nı́trico, Reperfusión, Pressão arterial, Presión sanguı́nea, Reperfusion, Blood pressure, Linear Models, Reperfusão, Blood Gas Analysis, Nitric Oxide Synthase

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Average
Top 10%
Green