
pmid: 40340892
pmc: PMC12094665
Abstract Background The Hierarchical Taxonomy of Psychopathology (HiTOP) and Research Domain Criteria (RDoC) frameworks emphasize transdiagnostic and mechanistic aspects of psychopathology. We used a multi-omics approach to examine how HiTOP’s psychopathology spectra (externalizing [EXT], internalizing [INT], and shared EXT + INT) map onto RDoC’s units of analysis. Methods We conducted analyses across five RDoC units of analysis: genes, molecules, cells, circuits, and physiology. Using genome-wide association studies from the companion Part I article, we identified genes and tissue-specific expression patterns. We used drug repurposing analyses that integrate gene annotations to identify potential therapeutic targets and single-cell RNA sequencing data to implicate brain cell types. We then used magnetic resonance imaging data to examine brain regions and circuits associated with psychopathology. Finally, we tested causal relationships between each spectrum and physical health conditions. Results Using five gene identification methods, EXT was associated with 1,759 genes, INT with 454 genes, and EXT + INT with 1,138 genes. Drug repurposing analyses identified potential therapeutic targets, including those that affect dopamine and serotonin pathways. Expression of EXT genes was enriched in GABAergic, cortical, and hippocampal neurons, while INT genes were more narrowly linked to GABAergic neurons. EXT + INT liability was associated with reduced gray matter volume in the amygdala and subcallosal cortex. INT genetic liability showed stronger causal effects on physical health – including chronic pain and cardiovascular diseases – than EXT. Conclusions Our findings revealed shared and distinct pathways underlying psychopathology. Integrating genomic insights with the RDoC and HiTOP frameworks advanced our understanding of mechanisms that underlie EXT and INT psychopathology.
Male, Psychopathology, internalizing, Mental Disorders, Drug Repositioning, Brain, nosology, psychopathology, genomic structural equation modeling, Magnetic Resonance Imaging, externalizing, RDoC, Humans, Original Article, HiTOP, Genome-Wide Association Study
Male, Psychopathology, internalizing, Mental Disorders, Drug Repositioning, Brain, nosology, psychopathology, genomic structural equation modeling, Magnetic Resonance Imaging, externalizing, RDoC, Humans, Original Article, HiTOP, Genome-Wide Association Study
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
