
pmid: 12743519
The maximum likelihood expectation maximization (ML-EM) algorithm has become available as an alternative to filtered back projection in SPECT. The actual physical performance may be different depending on the manufacturer and model, because of differences in computational details. The purpose of this study was to investigate the characteristics of seven different types of ML-EM algorithms using simple simulation data. Seven ML-EM algorithm programs were used: Genie (GE), esoft (Siemens), HARP-III (Hitachi), GMS-5500UI (Toshiba), Pegasys (ADAC), ODYSSEY-FX (Marconi), and Windows-PC (original software). Projection data of a 2-pixel-wide line source in the center of the field of view were simulated without attenuation or scatter. Images were reconstructed with ML-EM by changing the number of iterations from 1 to 45 for each algorithm. Image quality was evaluated after a reconstruction using full width at half maximum (FWHM), full width at tenth maximum (FWTM), and the total counts of the reconstructed images. In the maximum number of iterations, the difference in the FWHM value was up to 1.5 pixels, and that of FWTM, no less than 2.0 pixels. The total counts of the reconstructed images in the initial few iterations were larger or smaller than the converged value depending on the initial values. Our results for the simplest simulation data suggest that each ML-EM algorithm itself provides a simulation image. We should keep in mind which algorithm is being used and its computational details, when physical and clinical usefulness are compared.
Tomography, Emission-Computed, Single-Photon, Likelihood Functions, Algorithms
Tomography, Emission-Computed, Single-Photon, Likelihood Functions, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
