Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Low Temperature Physics
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Topological gap solitons in equidistant lithium niobate waveguide arrays

Authors: Gorbach, Andrey V.;

Topological gap solitons in equidistant lithium niobate waveguide arrays

Abstract

Equidistant 1D arrays of thin film lithium niobate waveguides can exhibit non-trivial topology due to a specific interplay between inter- and intra-modal couplings of two families of guided modes [A. V. Gorbach et al., Opt. Lett.48, 1982 (2023)]. In this work, we analyze two-color spatial solitons, emerging due to χ2 nonlinear interactions between the modes of non-trivial topology in the fundamental harmonic field, and modes of trivial topology in the second harmonic field. We discuss solitons localized in the bulk of the array (bulk solitons), and at an edge of a finite-size array (edge solitons). The latter emerge due to the nonlinear interactions between a topological edge mode in the fundamental harmonic and bulk modes in the second harmonic. We reveal that for each type of soliton, bulk or edge, there generally exist two families of solutions with different internal structures and ranges of propagation constants. All bulk solitons can only be excited above a certain power threshold dictated by the coupling strength in the second harmonic field and the phase matching between the fundamental and second harmonics. The power threshold for edge solitons generally appears to be much lower, and, by tuning the phase matching, it can be reduced to zero.

Related Organizations
Keywords

optical waveguide arrays, discrete solitons, FOS: Physical sciences, topological photonics, Pattern Formation and Solitons (nlin.PS), thin film lithium niobate, Nonlinear Sciences - Pattern Formation and Solitons, /dk/atira/pure/subjectarea/asjc/3100/3100; name=General Physics and Astronomy, Physics - Optics, Optics (physics.optics)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green