Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of CNN-Based Semantic Segmentation Algorithm for Crop Classification of Korean Major Upland Crops Using NIA AI HUB

Authors: Dong-Wook Kim; Gyujin Jang; Hak-Jin Kim;

Development of CNN-Based Semantic Segmentation Algorithm for Crop Classification of Korean Major Upland Crops Using NIA AI HUB

Abstract

Accurately estimating crop cultivation areas is critical for predicting yields and managing overproduction, particularly for staple crops grown in regions like Jeju Island, South Korea, where reporting cultivation areas is mandatory. This study developed a modified U-Net architecture for semantic segmentation, utilizing UAV-based high-resolution imagery in the open-source NIA AI HUB dataset. The dataset includes labeled RGB images of six winter crops—white radish, cabbage, onion, garlic, broccoli, and carrot—grown on Jeju Island, a key agricultural hub. The proposed model incorporates a ResNet-34 backbone, Attention Gates, and Residual Modules, achieving a mean F1 score of 85.4% and an intersection over union (IoU) of 74.6%, outperforming the original U-Net. This advancement significantly reduces misclassifications among visually similar crops, such as garlic and onion. Application to three unknown fields demonstrated a mean prediction accuracy of 90.2%, effectively estimating cultivation areas with high precision. By leveraging public datasets and innovative AI techniques, this study highlights the scalability and practicality of the proposed model in enhancing precision agriculture. These findings demonstrate the model’s potential to improve crop yield prediction, optimize resource allocation, and support sustainable farming practices in diverse agricultural environments.

Related Organizations
Keywords

RGB, NIA AI HUB, Cultivation area, UAV, Electrical engineering. Electronics. Nuclear engineering, semantic segmentation, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold