
Portfolio investment optimization is the process of selecting the best portfolio out of the set of all projects being considered. A high financial return is not the only concern since minimization of associated risk is as important. Its objective should be set to maximize the expected return and minimize the risk in the investment as most data need to be justified based on vagueness and future values. Thus, the portfolio investment optimization problem under a fuzzy environment is studied here by incorporating a classical mathematical optimization model with the fuzzy theory. It is solved with the fuzzy chance-constrained integer programming model by linear programming under predetermined conditions and limitations. This study also uses both the credibility index and credibilistic risk index for measuring the investment return and investment risk. A numerical example is illustrated to demonstrate the effectiveness and benefits of the proposed algorithm.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
