
Constrained multi-objective optimization problems (cMOPs) are complex because the optimizer should balance not only between exploration and exploitation, but also between feasibility and optimality. This article suggests a parameter-free constraint handling approach called constrained non-dominated sorting (CNS). In CNS, each solution in a population is assigned a constrained non-dominated rank based on its constraint violation degree and Pareto rank. An improved hybrid multi-objective optimization algorithm called cMOEA/H for solving cMOPs is proposed. Additionally, a dynamic resource allocation mechanism is adopted by cMOEA/H to spare more computational efforts for those relatively hard sub-problems. cMOEA/H is first compared with the baseline algorithm using an existing constraint handling mechanism, verifying the advantages of the proposed constraint handling mechanism. Then cMOEA/H is compared with some classic constrained multi-objective optimizers, experimental results indicating that cMOEA/H could be a competitive alternative for solving cMOPs. Finally, the characteristics of cMOEA/H are studied.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 51 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
