Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers in Biology...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computers in Biology and Medicine
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A denoising method for ECG signals based on CEEMDAN-TSO and stacked sparse autoencoders

Authors: Shun Li; Juan Li; Jiandong Mao; Wei Hong; Ao Sun;

A denoising method for ECG signals based on CEEMDAN-TSO and stacked sparse autoencoders

Abstract

Electrocardiogram (ECG) signals are used to detect the health status of the heart, providing an important basis for the prevention and diagnosis of cardiovascular diseases. However, ECG signals are susceptible to environmental and equipment-related influences, which can obscure the characteristic information within the signals. Removing noise from ECG signals is an urgent problem. This paper proposes a noise-reduction method for low-frequency ECG signals using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Tuna Swarm Optimization (TSO), and Stacked Sparse Autoencoder (SSAE), named CEEMDAN-TSO-SSAE. The TSO algorithm optimizes three parameters of the CEEMDAN algorithm: Noise Standard Deviation, Number of Realizations, and Maximum Iterations. These optimized parameters are then applied to decompose the ECG signals using CEEMDAN, and the Intrinsic Mode Functions (IMFs) are obtained. The correlation coefficient method is used to screen the IMFs, excluding modal components that do not meet the threshold. Finally, each effective IMF is denoised separately using the SSAE algorithm, and the denoised effective IMFs are used for signal reconstruction. To validate the effectiveness of CEEMDAN-TSO-SSAE, its performance is compared with wavelet packet decomposition, Empirical Mode Decomposition, TSO-based Variational Mode Decomposition, and a Denoising Autoencoder algorithm. The noise-reduction method using CEEMDAN-TSO-SSAE achieves the highest Signal-to-Noise Ratio (SNR) of 19.88 and the lowest Mean Squared Error (MSE) of 0.02. In tests using real signals with baseline drift, the CEEMDAN-TSO-SSAE method again produces the highest SNR (20.25) and the lowest MSE (0.01). The results demonstrate that the proposed method outperforms the comparative algorithms, effectively eliminating complex noise in ECG signals while preserving the useful components.

Related Organizations
Keywords

Electrocardiography, Humans, Signal Processing, Computer-Assisted, Signal-To-Noise Ratio, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!