Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Parallel & Dist...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Parallel & Distributed Technology Systems & Applications
Article . 1995 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Partitioning unstructured computational graphs for nonunifor

Authors: M. Kaddoura;

Partitioning unstructured computational graphs for nonunifor

Abstract

In heterogeneous computing environments, computational resources can have a nonuniform distribution that changes over time. To execute in such an environment, many irregular and loosely synchronous data-parallel applications must be carefully mapped. This article examines algorithms that provide this mapping by efficiently partitioning the computational graphs of these applications.Heterogeneity has become commonplace in high-performance computing environments. In the future most computing environments will consist of a cluster of nodes connected by a high-speed interconnection network. Node architectures will include high-performance SIMD and MIMD parallel computers as well as numerous high-performance workstations.In a heterogeneous environment, users can pool many computational resources to create a large virtual machine. This environment can be nonuniform -- that is, the machines or processors can have different computational powers. However, the pool of resources might change over the computation's lifetime because of machine failures or differing use patterns. It should be possible to add or remove resources without significantly affecting the other machines or changing the existing software. In such an adaptive environment, an individual machine could either be dedicated to a single user's computation or shared by users. The former strategy has the advantage that each machine has static computing capability, while the latter has the advantage of a higher rate of use.In this article we'll examine the mapping requirements for the parallelization of a large class of irregular and loosely synchronous data-parallel applications on nonuniform and adaptive environments. The computational structure of these applications can be described as a computational graph. In such a graph, nodes represent computational tasks and edges describe the communication between tasks.For many applications, the graph's vertices correspond to 2D and 3D coordinates, and the interaction between computations is limited to physically proximate vertices. Recursive coordinate bisection, index-based mapping, and recursive spectral bisection can exploit these properties to partition such applications. Essentially, these algorithms cluster proximate points together to form a partition such that the numbers of vertices attached to every partition are equal.Other researchers have used these algorithms to map graphs onto uniform parallel machines. We'll evaluate how the algorithms partition computational graphs on a simulation of a cluster of machines constituting a static, nonuniform environment. (In a static environment, computational resources are fixed throughout the completion of all tasks.) The algorithms assume that an interconnection network connects all the processors and that the cost of unit communication is the same between all the processors. (A bus is an example of such a network.) Although our algorithms specifically target a network-connected cluster of workstations, the issues are similar for parallelizing such applications on a network of machines.We'll also show how to use or extend these algorithms for an adaptive environment. Mapping graph vertices onto a 1D space can facilitate extremely fast remapping when the environment changes. This simple remapping achieves acceptable partitioning, though poorer than with mapping from scratch.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!