Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Remote Sensingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2021
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Building Plane Segmentation Based on Point Clouds

Authors: Zhonghua Su; Zhenji Gao; Guiyun Zhou; Shihua Li 0002; Lihui Song; Xukun Lu; Ning Kang 0017;

Building Plane Segmentation Based on Point Clouds

Abstract

Planes are essential features to describe the shapes of buildings. The segmentation of a plane is significant when reconstructing a building in three dimensions. However, there is a concern about the accuracy in segmenting plane from point cloud data. The objective of this paper was to develop an effective segmentation algorithm for building planes that combines the region growing algorithm with the distance algorithm based on boundary points. The method was tested on point cloud data from a cottage and pantry as scanned using a Faro Focus 3D laser range scanner and Matterport Camera, respectively. A coarse extraction of the building plane was obtained from the region growing algorithm. The coplanar points where two planes intersect were obtained from the distance algorithm. The building plane’s optimal segmentation was then obtained by combining the coarse extraction plane points and the corresponding coplanar points. The results show that the proposed method successfully segmented the plane points of the cottage and pantry. The optimal distance thresholds using the proposed method from the uncoarse extraction plane points to each plane boundary point of cottage and pantry were 0.025 m and 0.030 m, respectively. The highest correct rate and the highest error rate of the cottage’s (pantry’s) plane segmentations using the proposed method under the optimal distance threshold were 99.93% and 2.30% (98.55% and 2.44%), respectively. The F1 score value of the cottage’s and pantry’s plane segmentations using the proposed method under the optimal distance threshold reached 97.56% and 95.75%, respectively. This method can segment different objects on the same plane, while the random sample consensus (RANSAC) algorithm causes the plane to become over-segmented. The proposed method can also extract the coplanar points at the intersection of two planes, which cannot be separated using the region growing algorithm. Although the RANSAC-RG method combining the RANSAC algorithm and the region growing algorithm can optimize the segmentation results of the RANSAC (region growing) algorithm and has little difference in segmentation effect (especially for cottage data) with the proposed method, the method still loses coplanar points at some intersection of the two planes.

Related Organizations
Keywords

region growing algorithm, distance algorithm, boundary points, Science, point clouds, Q, building plane

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
gold