Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemical Engineering...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemical Engineering Research and Design
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-CEA
Article . 2024
License: CC BY
Data sources: HAL-CEA
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microwave enhanced demulsification of metal ion extraction emulsions: From permittivity modeling to proof of concept for solvent extraction processes

Authors: Cerino, C.; Roussel, H.; Estel, L.; Charton, Sophie; Polaert, I.;

Microwave enhanced demulsification of metal ion extraction emulsions: From permittivity modeling to proof of concept for solvent extraction processes

Abstract

The demulsification by microwaves of liquid-liquid systems for metal recycling was experimentally andnumerically investigated. Strongly ionic aqueous phases with high conductivities and typical organic phases, both representative of industrial ones, were used. Experimental microwave demulsification was achieved in both the W/O and O/W systems at the laboratory scale showing the rapidity and the efficiency of the process. The dielectric properties of these representative emulsions were measured and modeled using the permittivities measured in the separate phases and the phase fractions. Taking into account the direction of the emulsion, permittivities were predicted over a wide range of frequencies, along with microwave penetration depths in the whole range of phase fractions. Numerical simulations of the electric field distribution and penetration depths calculations at several frequencies demonstrated that microwave heating is relevant and possible in both W/O and O/W dense packed emulsions, which should rapidly lead to demulsification, including on a large industrial scale.

Keywords

[CHIM.GENI]Chemical Sciences/Chemical engineering, Solvent extraction, Liquid-liquid separation, Demulsification, [CHIM.GENI] Chemical Sciences/Chemical engineering, [SPI.GPROC] Engineering Sciences [physics]/Chemical and Process Engineering, [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering, [INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation, [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation, Microwave

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid