Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
European Journal of Nuclear Medicine
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.5167/uzh...
Other literature type . 2025
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep learning-based time-of-flight (ToF) enhancement of non-ToF PET scans for different radiotracers

Authors: Mehranian, Abolfazl; Wollenweber, Scott D; Bradley, Kevin M; Fielding, Patrick A; Huellner, Martin; Iagaru, Andrei; Dedja, Meghi; +5 Authors

Deep learning-based time-of-flight (ToF) enhancement of non-ToF PET scans for different radiotracers

Abstract

Abstract Aim To evaluate a deep learning-based time-of-flight (DLToF) model trained to enhance the image quality of non-ToF PET images for different tracers, reconstructed using BSREM algorithm, towards ToF images. Methods A 3D residual U-NET model was trained using 8 different tracers (FDG: 75% and non-FDG: 25%) from 11 sites from US, Europe and Asia. A total of 309 training and 33 validation datasets scanned on GE Discovery MI (DMI) ToF scanners were used for development of DLToF models of three strengths: low (L), medium (M) and high (H). The training and validation pairs consisted of target ToF and input non-ToF BSREM reconstructions using site-preferred regularisation parameters (beta values). The contrast and noise properties of each model were defined by adjusting the beta value of target ToF images. A total of 60 DMI datasets, consisting of a set of 4 tracers (18F-FDG, 18F-PSMA, 68Ga-PSMA, 68Ga-DOTATATE) and 15 exams each, were collected for testing and quantitative analysis of the models based on standardized uptake value (SUV) in regions of interest (ROI) placed in lesions, lungs and liver. Each dataset includes 5 image series: ToF and non-ToF BSREM and three DLToF images. The image series (300 in total) were blind scored on a 5-point Likert score by 4 readers based on lesion detectability, diagnostic confidence, and image noise/quality. Results In lesion SUVmax quantification with respect to ToF BSREM, DLToF-H achieved the best results among the three models by reducing the non-ToF BSREM errors from -39% to -6% for 18F-FDG (38 lesions); from -42% to -7% for 18F-PSMA (35 lesions); from -34% to -4% for 68Ga-PSMA (23 lesions) and from -34% to -12% for 68Ga-DOTATATE (32 lesions). Quantification results in liver and lung also showed ToF-like performance of DLToF models. Clinical reader resulted showed that DLToF-H results in an improved lesion detectability on average for all four radiotracers whereas DLToF-L achieved the highest scores for image quality (noise level). The results of DLToF-M however showed that this model results in the best trade-off between lesion detection and noise level and hence achieved the highest score for diagnostic confidence on average for all radiotracers. Conclusion This study demonstrated that the DLToF models are suitable for both FDG and non-FDG tracers and could be utilized for digital BGO PET/CT scanners to provide an image quality and lesion detectability comparable and close to ToF.

Keywords

2741 Radiology, Nuclear Medicine and Imaging, 610 Medicine & health, Original Article, 10181 Clinic for Nuclear Medicine

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
hybrid
Related to Research communities