Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A classification system based on a new wrapper feature selection algorithm for the diagnosis of primary and secondary polycythemia

Authors: Vasileios Korfiatis; Pantelis A. Asvestas; Konstantinos K. Delibasis; George K. Matsopoulos;

A classification system based on a new wrapper feature selection algorithm for the diagnosis of primary and secondary polycythemia

Abstract

Primary and Secondary Polycythemia are diseases of the bone marrow that affect the blood's composition and prohibit patients from becoming blood donors. Since these diseases may become fatal, their early diagnosis is important. In this paper, a classification system for the diagnosis of Primary and Secondary Polycythemia is proposed. The proposed system classifies input data into three classes; Healthy, Primary Polycythemic (PP) and Secondary Polycythemic (SP) and is implemented using two separate binary classification levels. The first level performs the Healthy/non-Healthy classification and the second level the PP/SP classification. To this end, a novel wrapper feature selection algorithm, called the LM-FM algorithm, is presented in order to maximize the classifier's performance. The algorithm is comprised of two stages that are applied sequentially: the Local Maximization (LM) stage and the Floating Maximization (FM) stage. The LM stage finds the best possible subset of a fixed predefined size, which is then used as an input for the next stage. The FM stage uses a floating size technique to search for an even better solution by varying the initially provided subset size. Then, the Support Vector Machine (SVM) classifier is used for the discrimination of the data at each classification level. The proposed classification system is compared with various well-established feature selection techniques such as the Sequential Floating Forward Selection (SFFS) and the Maximum Output Information (MOI) wrapper schemes, and with standalone classification techniques such as the Multilayer Perceptron (MLP) and SVM classifier. The proposed LM-FM feature selection algorithm combined with the SVM classifier increases the overall performance of the classification system, scoring up to 98.9% overall accuracy at the first classification level and up to 96.6% at the second classification level. Moreover, it provides excellent robustness regardless of the size of the input feature subset used.

Keywords

Adult, Male, Support Vector Machine, Humans, Female, Diagnosis, Computer-Assisted, Polycythemia, Middle Aged, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!