
doi: 10.1109/ispa.2010.97
Nowadays, NVIDIA’s CUDA is a general purpose scalable parallel programming model for writing highly parallel applications. It provides several key abstractions – a hierarchy of thread blocks, shared memory, and barrier synchronization. This model has proven quite successful at programming multithreaded many core GPUs and scales transparently to hundreds of cores: scientists throughout industry and academia are already using CUDA to achieve dramatic speedups on production and research codes. In this paper, we propose a hybrid parallel programming approach using hybrid CUDA and MPI programming, which partition loop iterations according to the number of C1060 GPU nodes in a GPU cluster which consists of one C1060 and one S1070. Loop iterations assigned to one MPI process are processed in parallel by CUDA run by the processor cores in the same computational node.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
