Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ EAI Endorsed Transac...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EAI Endorsed Transactions on Industrial Networks and Intelligent Systems
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Secure Cooperative Image Super-Resolution Transmission with Decode-and-Forward Relaying over Rayleigh Fading Channels

Authors: Ca V. Phan; Quoc-Tuan Vien; Hien-Thuan Duong;

A Secure Cooperative Image Super-Resolution Transmission with Decode-and-Forward Relaying over Rayleigh Fading Channels

Abstract

In addition to susceptibility to performance degradation due to hardware malfunctions and environmental influences, wireless image transmission poses risks of information exposure to eavesdroppers. This paper delves into the image communications within wireless relay networks (WRNs) and proposes a secure cooperative relaying (SCR) protocol over Rayleigh fading channels. In this protocol, a source node (referred to as Alice) transmits superior-resolution (SR) images to a destination node (referred to as Bob) with the assistance of a mediating node (referred to as Relay) operating in decode-and-forward mode, all while contending with the presence of an eavesdropper (referred to as Eve). In order to conserve transmission bandwidth, Alice firstly reduces the size of the original SR images before transmitting them to Relay and Bob. Subsequently, random linear network coding (RLNC) is employed by both Alice and Relay on the downscaled poor-resolution (PR) images to obscure the original images from Eve, thereby bolstering the security of the image communications. Simulation results demonstrate that the proposed SCR protocol surpasses both secure relaying transmission without a direct link and secure direct transmission without relaying links. Additionally, a slight reduction in image quality can be achieved by increasing the scaling factor for saving transmission bandwidth. Furthermore, the results highlight the SCR protocol’s superior effectiveness at Bob’s end when compared to Eve’s, which is due to Eve’s lack of access to the RLNC coefficient matrices and reference images utilised by Alice and Relay in the RLNC process. Finally, the evaluation of reference images, relay allocations and diversity reception over Rayleigh fading channels confirms the effectiveness of the SCR protocol for secure image communications in the WRNs.

Keywords

TK7885-7895, Computer engineering. Computer hardware, TA168, Random linear network coding, Image super-resolution, Deep learning, Image communication, Cooperative communications, Wireless relay networks, Systems engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold