Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University, ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
JCO Clinical Cancer Informatics
Article . 2025 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prospective Clinical Implementation of Paige Prostate Detect Artificial Intelligence Assistance in the Detection of Prostate Cancer in Prostate Biopsies: CONFIDENT P Trial Implementation of Artificial Intelligence Assistance in Prostate Cancer Detection

Authors: Rachel N. Flach; Carmen van Dooijeweert; Tri Q. Nguyen; Mitchell Lynch; Trudy N. Jonges; Richard P. Meijer; Britt B.M. Suelmann; +3 Authors

Prospective Clinical Implementation of Paige Prostate Detect Artificial Intelligence Assistance in the Detection of Prostate Cancer in Prostate Biopsies: CONFIDENT P Trial Implementation of Artificial Intelligence Assistance in Prostate Cancer Detection

Abstract

PURPOSE Pathologists diagnose prostate cancer (PCa) on hematoxylin and eosin (HE)–stained sections of prostate needle biopsies (PBx). Some laboratories use costly immunohistochemistry (IHC) for all cases to optimize workflow, often exceeding reimbursement for the full specimen. Despite the rise in digital pathology and artificial intelligence (AI) algorithms, clinical implementation studies are scarce. This prospective clinical trial evaluated whether an AI-assisted workflow for detecting PCa in PBx reduces IHC use while maintaining diagnostic safety standards. METHODS Patients suspected of PCa were allocated biweekly to either a control or intervention arm. In the control arm, pathologists assessed whole-slide images (WSI) of PBx using HE and IHC stainings. In the intervention arm, pathologists used the Paige Prostate Detect AI algorithm on HE slides, requesting IHC only as needed. IHC was requested for all morphologically negative slides in the AI arm. The main outcome was the relative risk (RR) of IHC use per detected PCa case at both patient and WSI levels. RESULTS Overall, 143 of 237 (60.3%) slides of 64 of 82 patients contained PCa (78.0%). AI assistance significantly reduced the risk of IHC use per detected PCa case at both the patient level (RR, 0.55; 95% CI, 0.39 to 0.72) and slide level (RR, 0.41; 95% CI, 0.29 to 0.52). Cost reductions on IHC were €1,700 for the trial, at €50 per IHC stain. AI-assisted pathologists reported higher confidence in their diagnoses (80% v 56% confident or high confidence). The median assessment time per HE slide showed no significant difference between the AI-assisted and control arms (139 seconds v 112 seconds; P = .2). CONCLUSION This study demonstrates that AI assistance for PCa detection in PBx significantly reduces IHC costs while maintaining diagnostic safety standards, supporting the business case for AI implementation in PCa detection.

Country
Netherlands
Related Organizations
Keywords

Prostatic Neoplasms/diagnosis, Male, Prostate/pathology, Prostate, Prostatic Neoplasms, Middle Aged, Clinical Trial, Immunohistochemistry, Artificial Intelligence, Immunohistochemistry/methods, Journal Article, Humans, Prospective Studies, Algorithms, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!