Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/embc48...
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improving the Accuracy of R-Peak Detection in a Wearable Armband Device for Daily Life Electrocardiogram Monitoring Using a Deep Convolutional Denoising Encoder-Decoder Network

Authors: Shirin Hajeb-Mohammadalipour; Md Billal Hossain; Ki H. Chon;

Improving the Accuracy of R-Peak Detection in a Wearable Armband Device for Daily Life Electrocardiogram Monitoring Using a Deep Convolutional Denoising Encoder-Decoder Network

Abstract

Continuous long-term heart rate (HR) monitoring using wearable devices is desirable to aid in the diagnosis of many health-related conditions. Recently, we have developed an armband device that does not use obstructive leads, has dry electrodes which are convenient for long-term electrocardiogram (ECG) recording, and has been shown to be an effective alternate approach for continuous ECG monitoring. However, motion artifacts (MA) due to electromyogram (EMG) contractions are acknowledged as the major challenge of an armband. In this study, we used a deep convolutional neural network denoising encoder-decoder (CNNDED) to enhance the accuracy of R-peak detection in MA-corrupted ECG recordings obtained by an armband device. We collected simultaneous 24-hour ECG recordings using both the armband device and a Holter monitor on 10 subjects. Each 10-sec ECG segment was converted to a time-frequency representation and subsequently used as the input to CNNDED. During the training process, the model learned to accentuate the location of R peaks by amplifying their values in each ECG beat and suppressing the remaining waveforms. For the training output, the model used the R-peak location information from the simultaneously collected Holter ECG data, which were considered as the reference. The performance of CNNDED was evaluated on an independent test data set using the standard performance metrics. The mean relative error of the estimated HR with respect to the Holter data was 17.5 and 7.3 beats/min, pre- and post-CNNDED, respectively. The mean relative difference of the root mean square of successive difference values were 0.23 and 0.06 before and after applying CNNDED, respectively. Although further study is needed, the current preliminary results suggest that CNNDED can improve detection of R peaks even when they are completely buried in the presence of EMG artifacts.

Related Organizations
Keywords

Electrocardiography, Wearable Electronic Devices, Electrocardiography, Ambulatory, Humans, Neural Networks, Computer, Artifacts

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!