
arXiv: 2507.10583
In this work, we compile $\textbf{$\texttt{DroidCollection}$}$, the most extensive open data suite for training and evaluating machine-generated code detectors, comprising over a million code samples, seven programming languages, outputs from 43 coding models, and over three real-world coding domains. Alongside fully AI-generated samples, our collection includes human-AI co-authored code, as well as adversarial samples explicitly crafted to evade detection. Subsequently, we develop $\textbf{$\texttt{DroidDetect}$}$, a suite of encoder-only detectors trained using a multi-task objective over $\texttt{DroidCollection}$. Our experiments show that existing detectors' performance fails to generalise to diverse coding domains and programming languages outside of their narrow training data. Additionally, we demonstrate that while most detectors are easily compromised by humanising the output distributions using superficial prompting and alignment approaches, this problem can be easily amended by training on a small amount of adversarial data. Finally, we demonstrate the effectiveness of metric learning and uncertainty-based resampling as means to enhance detector training on possibly noisy distributions.
Software Engineering (cs.SE), FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence, Computers and Society (cs.CY), Software Engineering, Computers and Society
Software Engineering (cs.SE), FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence, Computers and Society (cs.CY), Software Engineering, Computers and Society
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
