Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Физическая мезомехан...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Mesomechanics
Article . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Friction and wear of a spherical indenter under influence of out-of-plane ultrasonic oscillations

Authors: MILAHIN NATALIE; LI QIANG;

Friction and wear of a spherical indenter under influence of out-of-plane ultrasonic oscillations

Abstract

This paper presents an experimental and theoretical investigation of friction and wear of a spherical indenter. With the pin-on-disc-tribometer the out-of-plane oscillations are applied to the sliding indenter. Oscillations lead to a decrease of the coefficient of friction, and this effect is also related to the sliding velocity and oscillation amplitude. During the sliding movement, the contact area of indenter increases due to the wear of material. This radius of the worn spherical cap is measured after each sliding period. It is found that the radius of the wear flat increases with sliding distance according to a power law with the power 1/4 and is independent of the sliding velocity. It further is practically insensitive to the presence of oscillations. A theoretical analysis and a numerical simulation based on the method of dimensionality reduction are carried out, both describing the experimental data very well.

Keywords

ИЗНОС, WEAR, COEFFICIENT OF SLIDING FRICTION, МЕТОД РЕДУКЦИИ РАЗМЕРНОСТИ, ULTRASONIC OSCILLATION, METHOD OF DIMENSIONALITY REDUCTION, КОЭФФИЦИЕНТ ТРЕНИЯ СКОЛЬЖЕНИЯ, ИЗНОС, УЛЬТРАЗВУКОВЫЕ КОЛЕБАНИЯ, МЕТОД РЕДУКЦИИ РАЗМЕРНОСТИ, УЛЬТРАЗВУКОВЫЕ КОЛЕБАНИЯ, КОЭФФИЦИЕНТ ТРЕНИЯ СКОЛЬЖЕНИЯ

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold