Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/tnse.2...
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Staying Fresh: Efficient Algorithms for Timely Social Information Distribution

Authors: Songhua Li; Lingjie Duan;

Staying Fresh: Efficient Algorithms for Timely Social Information Distribution

Abstract

In location-based social networks (LBSNs), users sense urban point-of-interest (PoI) information in the vicinity and share such information with friends in online social networks. Given users' limited social connections and severe lags in disseminating fresh PoI to all, major LBSNs aim to enhance users' social PoI sharing by selecting $k$ out of $m$ users as hotspots and broadcasting their fresh PoI information to the entire user community. This motivates us to study a new combinatorial optimization problem that involves the interplay between an urban sensing network and an online social network. We prove that this problem is NP-hard and also renders existing approximation solutions not viable. Through analyzing the interplay effects between the two networks, we successfully transform the involved PoI-sharing process across two networks to matrix computations for deriving a closed-form objective to hold desirable properties (e.g., submodularity and monotonicity). This finding enables us to develop a polynomial-time algorithm that guarantees a ($1-\frac{m-2}{m}(\frac{k-1}{k})^k$) approximation of the optimum. Furthermore, we allow each selected user to move around and sense more PoI information to share and propose an augmentation-adaptive algorithm with decent performance guarantees. Finally, our theoretical results are corroborated by our simulation findings using both synthetic and real-world datasets.

This work is an updated version of our previous paper titled "Approximation Algorithms to Enhance Social Sharing of Fresh Point-of-Interest Information."

Keywords

Social and Information Networks (cs.SI), FOS: Computer and information sciences, Discrete Mathematics (cs.DM), Computer Science - Data Structures and Algorithms, Computer Science - Social and Information Networks, Data Structures and Algorithms (cs.DS), Computer Science - Discrete Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities