Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY NC ND
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PETSc/TAO developments for GPU-based early exascale systems

Authors: Richard Tran Mills; Mark F. Adams; Satish Balay; Jed Brown; Jacob Faibussowitsch; Toby Isaac; Matthew G. Knepley; +5 Authors

PETSc/TAO developments for GPU-based early exascale systems

Abstract

The Portable Extensible Toolkit for Scientific Computation (PETSc) library provides scalable solvers for nonlinear time-dependent differential and algebraic equations and for numerical optimization via the Toolkit for Advanced Optimization (TAO). PETSc is used in dozens of scientific fields and is an important building block for many simulation codes. During the U.S. Department of Energy’s Exascale Computing Project, the PETSc team has made substantial efforts to enable efficient utilization of the massive fine-grain parallelism present within exascale compute nodes and to enable performance portability across exascale architectures. We recap some of the challenges that designers of numerical libraries face in such an endeavor, and then discuss the many developments we have made, which include the addition of new GPU backends, features supporting efficient on-device matrix assembly, better support for asynchronicity and GPU kernel concurrency, and new communication infrastructure. We evaluate the performance of these developments on some pre-exascale systems as well as the early exascale systems Frontier and Aurora, using compute kernel, communication layer, solver, and mini-application benchmark studies, and then close with a few observations drawn from our experiences on the tension between portable performance and other goals of numerical libraries.

Keywords

46 Information and Computing Sciences (for-2020), FOS: Computer and information sciences, Distributed Computing (science-metrix), 00A69, 4601 Applied Computing (for-2020), Computer Science - Distributed, Parallel, and Cluster Computing, 4601 Applied computing (for-2020), 4606 Distributed computing and systems software (for-2020), Computer Science - Mathematical Software, Distributed, Parallel, and Cluster Computing (cs.DC), 7 Affordable and Clean Energy (sdg), 0805 Distributed Computing (for), Mathematical Software (cs.MS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green