Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SIAM Journal on Comp...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
SIAM Journal on Computing
Article . 1988 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Complexity of Covering Vertices by Faces in a Planar Graph

On the complexity of covering vertices by faces in a planar graph
Authors: Bienstock, Daniel; Monma, Clyde L.;

On the Complexity of Covering Vertices by Faces in a Planar Graph

Abstract

The pair (G,D) consisting of a planar graph \(G=(V,E)\) with n vertices together with a subset of d special vertices \(D\subseteq V\) is called k- planar if there is an embedding of G in the plane so that at most k faces of G are required to cover all of the vertices in D. Checking 1-planarity can be done in linear-time since it reduces to a problem of checking planarity of a related graph. We present an algorithm which given a graph G and a value k either determines that G is not k-planar or generates an appropriate embedding and associated minimum cover in \(O(c^ k n)\) time, where c is a constant. Hence, the algorithm runs in linear time for any fixed k. The fact that the time required by the algorithm grows exponentially in k is to be expected since we also show that for arbitrary k, the associated decision problem is strongly NP-complete, even when the planar graph has essentially a unique planar embedding, \(d=\theta (n)\), and all facial cycles have bounded length. These results provide a polynomial-time recognition algorithm for special cases of Steiner tree problems in graphs which are solvable in polynomial time.

Related Organizations
Keywords

embedding, Graph theory (including graph drawing) in computer science, Analysis of algorithms and problem complexity, planar graph, polynomial-time recognition algorithm, complexity, Steiner tree, Planar graphs; geometric and topological aspects of graph theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 1%
Top 10%
bronze