
doi: 10.1145/3012011
This article describes Surge, a nested data-parallel programming system designed to simplify the porting and tuning of parallel applications to multiple target architectures. Surge decouples high-level specification of computations, expressed using a C++ programming interface, from low-level implementation details using two first-class constructs: schedules and policies. Schedules describe the valid ways in which data-parallel operators may be implemented, while policies encapsulate a set of parameters that govern platform-specific code generation. These two mechanisms are used to implement a code generation system that analyzes computations and automatically generates a search space of valid platform-specific implementations. An input and architecture-adaptive autotuning system then explores this search space to find optimized implementations. We express in Surge five real-world benchmarks from domains such as machine learning and sparse linear algebra and from the high-level specifications, Surge automatically generates CPU and GPU implementations that perform on par with or better than manually optimized versions.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
