
arXiv: 2304.11665
Nowadays, algorithms with fast convergence, small memory footprints, and low per-iteration complexity are particularly favorable for artificial intelligence applications. In this paper, we propose a doubly stochastic algorithm with a novel accelerating multi-momentum technique to solve large scale empirical risk minimization problem for learning tasks. While enjoying a provably superior convergence rate, in each iteration, such algorithm only accesses a mini batch of samples and meanwhile updates a small block of variable coordinates, which substantially reduces the amount of memory reference when both the massive sample size and ultra-high dimensionality are involved. Specifically, to obtain an ε-accurate solution, our algorithm requires only O(log(1/ε)/sqrt(ε)) overall computation for the general convex case and O((n+sqrt{nκ})log(1/ε)) for the strongly convex case. Empirical studies on huge scale datasets are conducted to illustrate the efficiency of our method in practice.
FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
