Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE/ACM Transaction...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE/ACM Transactions on Audio Speech and Language Processing
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2017
Data sources: Hal
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Denoised Bottleneck Features From Deep Autoencoders for Telephone Conversation Analysis

Authors: Janod, Killian; Morchid, Mohamed; Dufour, Richard; Linares, Georges; de Mori, Renato;

Denoised Bottleneck Features From Deep Autoencoders for Telephone Conversation Analysis

Abstract

Automatic transcription of spoken documents is affected by automatic transcription errors that are especially frequent when speech is acquired in severe noisy conditions. Automatic speech recognition errors induce errors in the linguistic features used for a variety of natural language processing tasks. Recently, denoisng autoencoders (DAE) and stacked autoencoders (SAE) have been proposed with interesting results for acoustic feature denoising tasks. This paper deals with the recovery of corrupted linguistic features in spoken documents. Solutions based on DAEs and SAEs are considered and evaluated in a spoken conversation analysis task. In order to improve conversation theme classification accuracy, the possibility of combining abstractions obtained from manual and automatic transcription features is considered. As a result, two original representations of highly imperfect spoken documents are introduced. They are based on bottleneck features of a supervised autoencoder that takes advantage of both noisy and clean transcriptions to improve the robustness of error prone representations. Experimental results on a spoken conversation theme identification task show substantial accuracy improvements obtained with the proposed recovery of corrupted features.

Keywords

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], [INFO.INFO-TT] Computer Science [cs]/Document and Text Processing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!