
AbstractMusic perception engages multiple brain regions, however the neural dynamics of this core human experience remains elusive. We applied predictive models to intracranial EEG data from 29 patients listening to a Pink Floyd song. We investigated the relationship between the song spectrogram and the elicited high-frequency activity (70-150Hz), a marker of local neural activity. Encoding models characterized the spectrotemporal receptive fields (STRFs) of each electrode and decoding models estimated the population-level song representation. Both methods confirmed a crucial role of the right superior temporal gyri (STG) in music perception. A component analysis on STRF coefficients highlighted overlapping neural populations tuned to specific musical elements (vocals, lead guitar, rhythm). An ablation analysis on decoding models revealed the presence of unique musical information concentrated in the right STG and more spatially distributed in the left hemisphere. Lastly, we provided the first song reconstruction decoded from human neural activity.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
