Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://aging.jmir.o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://aging.jmir.org/2020/2/...
Article
License: CC BY
Data sources: UnpayWall
https://doi.org/10.2196/prepri...
Article . 2020 . Peer-reviewed
Data sources: Crossref
addClaim

Inferring Destinations and Activity Types of Older Adults From GPS Data: Algorithm Development and Validation (Preprint)

Authors: Sayeh Bayat; Gary Naglie; Mark J Rapoport; Elaine Stasiulis; Belkacem Chikhaoui; Alex Mihailidis;

Inferring Destinations and Activity Types of Older Adults From GPS Data: Algorithm Development and Validation (Preprint)

Abstract

BACKGROUND Outdoor mobility is an important aspect of older adults’ functional status. GPS has been used to create indicators reflecting the spatiotemporal dimensions of outdoor mobility for applications in health and aging. However, outdoor mobility is a multidimensional construct. There is, as of yet, no classification algorithm that groups and characterizes older adults’ outdoor mobility based on its semantic aspects (ie, mobility intentions and motivations) by integrating geographic and domain knowledge. OBJECTIVE This study assesses the feasibility of using GPS to determine semantic dimensions of older adults’ outdoor mobility, including destinations and activity types. METHODS A total of 5 healthy individuals, aged 65 years or older, carried a GPS device when traveling outside their homes for 4 weeks. The participants were also given a travel diary to record details of all excursions from their homes, including date, time, and destination information. We first designed and implemented an algorithm to extract destinations and infer activity types (eg, food, shopping, and sport) from the GPS data. We then evaluated the performance of the GPS-derived destination and activity information against the traditional diary method. RESULTS Our results detected the stop locations of older adults from their GPS data with an F1 score of 87%. On average, the extracted home locations were within a 40.18-meter (SD 1.18) distance of the actual home locations. For the activity-inference algorithm, our results reached an F1 score of 86% for all participants, suggesting a reasonable accuracy against the travel diary recordings. Our results also suggest that the activity inference’s accuracy measure differed by neighborhood characteristics (ie, Walk Score). CONCLUSIONS We conclude that GPS technology is accurate for determining semantic dimensions of outdoor mobility. However, further improvements may be needed to develop a robust application of this system that can be adopted in clinical practice.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average