Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.medrxiv....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.medrxiv.org/conten...
Article
License: CC BY NC ND
Data sources: UnpayWall
https://doi.org/10.1101/2021.1...
Article . 2021 . Peer-reviewed
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An automated heart rate-based algorithm for sleep stage classification: validation using conventional PSG and innovative wearable ECG device

Authors: Nicolò Pini; Ju Lynn Ong; Gizem Yilmaz; Nicholas I. Y. N. Chee; Zhao Siting; Animesh Awasthi; Siddharth Biju; +4 Authors

An automated heart rate-based algorithm for sleep stage classification: validation using conventional PSG and innovative wearable ECG device

Abstract

AbstractStudy ObjectivesValidate a HR-based deep-learning algorithm for sleep staging named Neurobit-HRV (Neurobit Inc., New York, USA).MethodsThe algorithm can perform classification at 2-levels (Wake; Sleep), 3-levels (Wake; NREM; REM) or 4-levels (Wake; Light; Deep; REM) in 30-second epochs. The algorithm was validated using an open-source dataset of PSG recordings (Physionet CinC dataset, n=994 participants) and a proprietary dataset (Z3Pulse, n=52 participants), composed of HR recordings collected with a chest-worn, wireless sensor. A simultaneous PSG was collected using SOMNOtouch. We evaluated the performance of the models in both datasets using Accuracy (A), Cohen’s kappa (K), Sensitivity (SE), Specificity (SP).ResultsCinC - The highest value of accuracy was achieved by the 2-levels model (0.8797), while the 3-levels model obtained the best value of K (0.6025). The 4-levels model obtained the lowest SE (0.3812) and the highest SP (0.9744) for the classification of Deep sleep segments. AHI and biological sex did not affect sleep scoring, while a significant decrease of performance by age was reported across the models. Z3Pulse - The highest value of accuracy was achieved by the 2-levels model (0.8812), whereas the 3-levels model obtained the best value of K (0.611). For classification of the sleep states, the lowest SE (0.6163) and the highest SP (0.9606) were obtained for the classification of Deep sleep segment.ConclusionsResults demonstrate the feasibility of accurate HR-based sleep staging. The combination of the illustrated sleep staging algorithm with an inexpensive HR device, provides a cost-effective and non-invasive solution easily deployable in the home.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average