
Smoke can break dormancy and promote seed germination of many plant species. We investigated changes in the gene expression changes after imbibition of light-sensitive Lactuca sativa L. cv. Grand Rapids achenes with dilute smoke water compared to water control samples kept in dark or continuous light. Although no difference was detected in the smoke water vs. water control samples germinated in light, smoke water treatment resulted in the differential display of several expressed sequence tags (ESTs) when compared to water control samples kept in dark. The most pronounced fragments isolated correspond to known genes with functions related to cell wall expansion, abscisic acid regulation, regulation of translation, the cell division cycle, carbohydrate metabolism and desiccation tolerance. These data clearly indicate that the smoke water, which stimulates germination of light-sensitive Grand Rapids lettuce seeds in the dark, rapidly affects genes that are essential for cell division, cell wall expansion and mobilization and utilization of nutrients for the resumption of embryo growth. Although the master genes remained unknown, our hope is that the using of maize microarray will reveal the whole molecular background of smoke action.
Agriculture (General), Plant culture, S1-972, SB1-1110
Agriculture (General), Plant culture, S1-972, SB1-1110
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
