
This paper presents an intelligent meta-heuristic algorithm, named improved equilibrium optimizer (IEO), for addressing the optimization problem of multi-objective simultaneous integration of distributed generators at unity and optimal power factor in a distribution system. The main objective of this research is to consider the multi-objective function for minimizing total power loss, improving voltage deviation, and reducing integrated system operating costs with strict technical constraints. An improved equilibrium optimizer is an enhanced version of the equilibrium optimizer that can provide better performance, stability, and convergence characteristics than the original algorithm. For evaluating the effectiveness of the suggested method, the IEEE 69-bus radial distribution system is chosen as a test system, and simulation results from this method are also compared fairly with many previously existing methods for the same targets and constraints. Thanks to its ability to intelligently expand the search space and avoid local traps, the suggested method has become a robust stochastic optimization method in tackling complex optimization tasks.
meta-heuristic algorithm, voltage deviation, total power loss, Electrical engineering. Electronics. Nuclear engineering, improved equilibrium optimizer, distributed generator, TK1-9971
meta-heuristic algorithm, voltage deviation, total power loss, Electrical engineering. Electronics. Nuclear engineering, improved equilibrium optimizer, distributed generator, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
