Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HBRC Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HBRC Journal
Article . 2013
Data sources: DOAJ
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FEM to

Authors: Moaz H. Ali; Basim A. Khidhir; M.N.M. Ansari; Bashir Mohamed;
Abstract

Finite element modeling (FEM) is considered a famous method belonging to the numerical simulation methods. First it is a dominant technique in structural mechanics. Hence, this paper is focused on the effect of feed rate (f) on surface roughness (Ra) and cutting force components (Fc,Ft) during the face-milling operation of the titanium alloy (Ti–6Al–4V). The design of experiments was used to conduct the experiments to evaluate the effect of the feed rate on the machining responses such as surface roughness and cutting force components using a face milling operation during the cutting process of the titanium alloy (Ti–6Al–4V). The tests are performed at several feed rates (f) while the axial depth of the cut and cutting speed remain constant in dry cutting conditions. The results showed that one could predict the surface roughness by measuring the feed cutting force instead of directly measuring the surface roughness experimentally through using the finite element method to build the model and to predict the surface roughness from the values of the feed cutting force. This is because a similar trend was found between the surface roughness and feed cutting force. Therefore, constructing a prediction model via finite element modeling (FEM) led to the conclusion that we can estimate feed cutting force and thus surface roughness.

Keywords

Cutting force, Building construction, Surface roughness, Finite element modeling (FEM), Feed rate, Titanium alloy (Ti–6Al–4V), TA1-2040, Engineering (General). Civil engineering (General), Face-milling, TH1-9745

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold