Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Shuiwen dizhi gongch...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Shuiwen dizhi gongcheng dizhi
Article . 2024
Data sources: DOAJ
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Locating critical sliding surface of slopes by estimation of distribution algorithm

Authors: Qiuling LYU; Jianping WU; Donglin WANG;

Locating critical sliding surface of slopes by estimation of distribution algorithm

Abstract

Most of the optimization algorithms to solve the slope critical sliding surface have the disadvantages of complex structure, difficult to determine the parameter value, and poor optimization effect. This study introduced the estimation of the distribution algorithm based on the Gaussian distribution model, and combined with the sliding surface calculation and analysis model using the simplified Bishop method, to establish a new critical sliding surface search method with simple biological collaboration and competition ideas; secondly, a local search method for the 3-degrees of freedom was designed to compensate for the poor local search performance of the estimation of distribution algorithm. The standard and improvement methods were applied to the three calculation examples of increasing slope section complexity, respectively. The orthogonal experimental results from the standard method were validated by range analysis and multivariate analysis of variance, and the comparative analysis of the calculation of the standard algorithm and the improved algorithm was conducted. The results show that the standard estimation of distribution algorithm can be used to calculate the critical sliding surface of slopes. When the calculated case is simple, the control factors have limited influence on the calculated results; when it is complex, the population size has a significant influence. Compared to the standard algorithm, the improvement algorithm has better calculation and faster speed, and can effectively reduce the impact of the population size on the calculation. The preliminary verification shows that the model is more robust and has a broad application prospect. This study provides a new insight to explore the application of the distribution estimation algorithm in the slope critical sliding surface.

Keywords

QE1-996.5, critical sliding surface, local search, slope, orthogonal experimental, Geology, simplified bishop method, estimation of distribution algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities