Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Dianzi Jishu Yingyon...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Dianzi Jishu Yingyong
Article . 2018
Data sources: DOAJ
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-convex combined filter based on maximum correntropy criterion

Authors: Wu Wenjing; Liang Zhonghua; Luo Qianwen; Li Wei;

Multi-convex combined filter based on maximum correntropy criterion

Abstract

Correntropy based algorithms are widely used in non-Gaussian signal processing, but they also suffer from the conflict between the step size and the misadjustment. In order to solve this problem, a convex combination filter based on maximum correntropy criterion(CMCC) was proposed to obtain the fast convergence speed of the filter with large step size as well as the low misadjustment of the filter with small step size. However, the convex combination of two filters with different step sizes will result in the penalties in terms of the combined filter′s convergence speed and the ability to track the optimal value. In this paper, a multi-convex combination filter based on maximum correntropy criterion(MCMCC) is proposed to provide more adaptive filters with different step sizes, so that the weight ratio can be flexibly adjusted for more step sizes, and thus having better tracking ability. Simulation results show that compared with the CMCC algorithm, the proposed MCMCC algorithm has faster convergence speed, stronger re-convergence performance and better tracking ability in the system identification for in the presence of mixed Gaussian noise and abrupt change.

Keywords

TK7800-8360, mixed Gaussian noise, adaptive filter; convex combination; maximum correntropy criterion(MCC), Electronics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold