Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ EBioMedicinearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EBioMedicine
Article . 2025
Data sources: DOAJ
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

From intensive care monitors to cloud environments: a structured data pipeline for advanced clinical decision supportResearch in context

Authors: Sijm H. Noteboom; Eline Kho; Maria Galanty; Clara I. Sánchez; Frans C.P. ten Bookum; Denise P. Veelo; Alexander P.J. Vlaar; +1 Authors

From intensive care monitors to cloud environments: a structured data pipeline for advanced clinical decision supportResearch in context

Abstract

Summary: Background: Clinical decision-making is increasingly shifting towards data-driven approaches and requires large databases to develop state-of-the-art algorithms for diagnosing, detecting and predicting diseases. The intensive care unit (ICU), a data-rich setting, faces challenges with high-frequency, unstructured monitor data. Here, we showcase a successful example of a data pipeline to efficiently move patient data to the cloud environment for structured storage. This supports individual patient analysis, enables largescale retrospective research, and the development of data-driven algorithms. Methods: Since June 2021, ICU data of the Amsterdam UMC have been collected and stored in a third-party cloud environment which is hosted on large virtual servers. The feasibility of the pipeline will be demonstrated with the available data through research and clinical use cases. Furthermore, privacy, safety, data quality, and environmental impact are carefully considered in the cloud storage transition. Findings: Over two years, data from over 9000 patients have been stored in the cloud. The availability, agility, computational power, high uptime, and streaming data pipelines allow for large retrospective analyses as well as the opportunity to implement real-time prediction of critical events with machine learning algorithms. Critical events can be accessed by applying keyword search in the natural language data, annotated by the treating team. Besides, the cloud environment offers storage of institutional data enabling evaluation of healthcare. Interpretation: The combined data and features of cloud environments offer support for predictive algorithm development and implementation, healthcare evaluation, and improved individual patient care. Funding: University of Amsterdam Research Priority Agenda Program AI for Heath Decision-Making.

Keywords

Real-time decision-making, Medicine (General), R5-920, Data-driven algorithms, Cloud environments, R, Medicine, Data management

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold