Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wellcome Open Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wellcome Open Research
Article . 2020 . Peer-reviewed
Data sources: DOAJ
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The transmissibility of novel Coronavirus in the early stages of the 2019-20 outbreak in Wuhan: Exploring initial point-source exposure sizes and durations using scenario analysis [version 1; peer review: 2 approved]

Authors: Sam Abbott; Joel Hellewell; James Munday; CMMID nCoV working group; Sebastian Funk;

The transmissibility of novel Coronavirus in the early stages of the 2019-20 outbreak in Wuhan: Exploring initial point-source exposure sizes and durations using scenario analysis [version 1; peer review: 2 approved]

Abstract

Background: The current novel coronavirus outbreak appears to have originated from a point-source exposure event at Huanan seafood wholesale market in Wuhan, China. There is still uncertainty around the scale and duration of this exposure event. This has implications for the estimated transmissibility of the coronavirus and as such, these potential scenarios should be explored. Methods: We used a stochastic branching process model, parameterised with available data where possible and otherwise informed by the 2002-2003 Severe Acute Respiratory Syndrome (SARS) outbreak, to simulate the Wuhan outbreak. We evaluated scenarios for the following parameters: the size, and duration of the initial transmission event, the serial interval, and the reproduction number (R0). We restricted model simulations based on the number of observed cases on the 25th of January, accepting samples that were within a 5% interval on either side of this estimate. Results: Using a pre-intervention SARS-like serial interval suggested a larger initial transmission event and a higher R0 estimate. Using a SARs-like serial interval we found that the most likely scenario produced an R0 estimate between 2-2.7 (90% credible interval (CrI)). A pre-intervention SARS-like serial interval resulted in an R0 estimate between 2-3 (90% CrI). There were other plausible scenarios with smaller events sizes and longer duration that had comparable R0 estimates. There were very few simulations that were able to reproduce the observed data when R0 was less than 1. Conclusions: Our results indicate that an R0 of less than 1 was highly unlikely unless the size of the initial exposure event was much greater than currently reported. We found that R0 estimates were comparable across scenarios with decreasing event size and increasing duration. Scenarios with a pre-intervention SARS-like serial interval resulted in a higher R0 and were equally plausible to scenarios with SARs-like serial intervals.

Keywords

Science, Q, R, Medicine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities