
Models presented in inventory management, encompass varied parameters. Primary factor in classic models related to determination of the economical ordering quantity (EOQ) and the economical production quantity (EPQ), is to consider parameters like the setup cost, the holding cost and the demand rate, to be fixed. This characteristic leads to a great difference among the quantity of the economical ordering obtained in classic models and real-word conditions. For instance, It should be stated that not only the holding costs of spoiled and useless products are not always fixed, but also, they would be increased by passing time. This article is an attempt to develop classical EOQ and EPQ models by considering holding and purchasing cost as an increasing continuous function of the ordering cycle time. Due to the complexity of the considered problem, two meta-heuristic algorithms, including Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multi-objective Particle Swarm Optimization (MOPSO) are developed. Optimizing service level is considered as one of main apprehension in management science, that’s why increasing service level optimization would be evaluated as the second objective. As the performance of meta-heuristic algorithms is significantly influenced by calibrating their parameters, Taguchi methodology has been used to tune the parameters of the developed algorithms
holding costs, meta-heuristic algorithm, multi-objective optimization, Industrial engineering. Management engineering, shortage cost, economic production, T55.4-60.8
holding costs, meta-heuristic algorithm, multi-objective optimization, Industrial engineering. Management engineering, shortage cost, economic production, T55.4-60.8
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
