
Enzyme sequence design has always been a challenging task, particularly in optimising key properties such as enzyme solubility, stability, and activity. This study proposes an innovative approach by utilising a variational autoencoder (VAE) model integrated with the Gromov-Wasserstein (GW) distance for enzyme sequence optimisation. The GWAE model improves representation learning by using the GW distance, thereby generating functional variants with desired characteristics. We also introduce an innovative enzyme dataset construction method that incorporates multiple sequence alignment (MSA) techniques to address sequence length discrepancies, enhancing the accuracy of the optimisation process. Experimental results show that the GWAE model outperforms the traditional VAE on multiple metrics. The generated enzyme sequences demonstrate superior solubility, stability, and hydrophobicity. Additionally, by integrating AlphaFold3 for structural prediction, we verify the structural stability of the generated sequences, further enhancing their practical applicability.
representation learning, variational autoencoder, Therapeutics. Pharmacology, RM1-950, Enzyme optimisation, Research Article
representation learning, variational autoencoder, Therapeutics. Pharmacology, RM1-950, Enzyme optimisation, Research Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
