
To develop ensemble or multi-modeling technologies for optimization of forecasting model parameters. The proposed forecasting model in the form of a recurrent penalty spline (P-spline) has several adjustable parameters, which ensures the adaptability of the model for predicting the behavior of a time series based on its retrospective values. Creating an ensemble of models in the class of variable P-spline parameters is the initial information for longitudinal clustering of time series. Such an approach allows us to estimate the centers of clusters along the time axis, which correspond to the optimal values of the model parameters on the selected time series segment in real time. This made it possible to increase the efficiency of the recurrent P-spline as a real-time forecasting model, reduce computational costs and increase the performance of forecasting algorithms.
TK7885-7895, QA76.75-76.765, Computer engineering. Computer hardware, Q300-390, density clustering, real-time forecasting, penalized p-spline, Computer software, performance metrics, ensemble modeling, Cybernetics
TK7885-7895, QA76.75-76.765, Computer engineering. Computer hardware, Q300-390, density clustering, real-time forecasting, penalized p-spline, Computer software, performance metrics, ensemble modeling, Cybernetics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
