
doi: 10.3390/app15147627
Medical consumable orders are characterized by diverse product types, small batch sizes, frequent orders, and high customization requirements, often leading to inefficient workshop scheduling and difficulties in meeting multiple production constraints. To address these challenges, this study proposes a bi-level optimization model for order splitting and reorganization considering multi-dimensional and multi-scale characteristics. The multi-dimensional characteristics encompass materials, processes, equipment, and work efficiency, while the multi-scale aspects involve finished products, components, assemblies, and parts. At the upper level, the model optimizes order task splitting by refining splitting strategies and preprocessing constraints to generate high-quality input for the reorganization phase. The lower level optimizes sub-task prioritization, batch sizes, and resource scheduling to develop a production plan that balances cost and efficiency. Subsequently, to solve this bi-level optimization problem, a hybrid bi-objective optimization algorithm is designed, integrating a collaborative iterative strategy to enhance solution efficiency and quality. Finally, a case study and comparative experiments validate the practicality and effectiveness of the proposed model and algorithm.
Technology, QH301-705.5, T, Physics, QC1-999, medical consumable, Engineering (General). Civil engineering (General), Chemistry, multi-objective evolutionary algorithm, bi-level collaborative optimization, collaborative iterative strategy, TA1-2040, Biology (General), QD1-999
Technology, QH301-705.5, T, Physics, QC1-999, medical consumable, Engineering (General). Civil engineering (General), Chemistry, multi-objective evolutionary algorithm, bi-level collaborative optimization, collaborative iterative strategy, TA1-2040, Biology (General), QD1-999
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
