
A modified algorithm is presented for solving the problem of spacecraft rendezvous in a near-circular orbit. The study considers the calculation of maneuver parameters executed on several turns using a low-thrust propulsion system. It is assumed that the active spacecraft performs maneuvers within a predefined region around the target spacecraft, while the perturbative effects of Earth’s gravitational field non-centrality and atmospheric drag are neglected. Well-established approximate mathematical models of spacecraft motion are employed to address the rendezvous problem. The methodology of determining the parameters of maneuvers is structured into three key stages: in the first and third stages, the parameters of impulsive transfer and low-thrust transfer are determined using analytical methods. In the second stage, maneuvers are allocated across the available turns to ensure a successful rendezvous by minimizing a selected control variable. The proposed approach is distinguished by its computational efficiency and robustness, making it suitable for onboard implementation in autonomous spacecraft navigation systems. As a case study, the paper analyzes the dependence of total characteristic velocity required for rendezvous on the magnitude of engine thrust and provides a comparative assessment of the total characteristic velocity for both impulsive and low-thrust maneuvering scenarios.
maneuver parameters, velocity impulse, low-thrust propulsion, spacecraft rendezvous, approximate mathematical models, TA1-2040, Engineering (General). Civil engineering (General), near-circular orbit
maneuver parameters, velocity impulse, low-thrust propulsion, spacecraft rendezvous, approximate mathematical models, TA1-2040, Engineering (General). Civil engineering (General), near-circular orbit
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
