
Task scheduling in Cloud-Fog computing environments is a critical aspect of optimizing resource allocation and enhancing performance. This study presents an improved version of the Dingo Optimization Algorithm (IDOA) specifically designed for task scheduling in Cloud-Fog computing. The enhanced IDOA incorporates novel modifications to address the limitations of the original algorithm and improve the efficiency and effectiveness of task allocation. The algorithm incorporates modifications to the fitness evaluation function, a dynamic update mechanism, and a neighborhood search technique to enhance task allocation efficiency. Extensive simulations and comparisons with existing algorithms are conducted to evaluate the performance of the IDOA. The results demonstrate its superiority in terms of task makespan time, VM failure rate, and degree of imbalance. Overall, the improved Dingo Optimization Algorithm offers a promising solution for efficient task scheduling in Cloud-Fog computing environments. The algorithm effectively balances exploration and exploitation, facilitating efficient task scheduling in Cloud-Fog computing environments and optimizing cloud-based applications and services.
Task scheduling, degree of imbalance, Cloud-Fog computing, Dingo Optimization Algorithm., makespan, TA1-2040, Engineering (General). Civil engineering (General)
Task scheduling, degree of imbalance, Cloud-Fog computing, Dingo Optimization Algorithm., makespan, TA1-2040, Engineering (General). Civil engineering (General)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
