Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Doctoral thesis . 2023
License: CC BY NC ND
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Recolector de Ciencia Abierta, RECOLECTA
Doctoral thesis . 2023
License: CC BY NC ND
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Image steganalysis and steganography in the spatial domain

Authors: Lerch-Hostalot, Daniel;

Image steganalysis and steganography in the spatial domain

Abstract

En esta tesis, proponemos diferentes técnicas novedosas para detectar información oculta (estegoanálisis) y para ocultar información (esteganografı́a). Estas técnicas se presentan como una colección de cinco contribuciones, que comparten un problema común. La primera contribución presenta tres métodos diferentes para detectar información oculta usando técnicas de desplazamiento de histograma, algunas de las cuales son ataques dirigidos a esquemas concretos, mientras que las otras son más genéricas. En la segunda contribución, en el área del aprendizaje automático aplicado al estegoanálisis, presentamos un nuevo extractor de caracterı́sticas para detectar información oculta en el dominio espacial, que se puede usar como submodelo adicional en el framework rich models, y que supera la precisión obtenida por el método del estado del arte subtractive pixel adjacency matrix (SPAM) usando un número inferior de caracterı́sticas. En el mismo contexto, la tercera contribución es un algoritmo esteganográfico que explota la debilidad de algunos submodelos para tratar con datos de muchas dimensiones (los cuales suelen usar un umbral para superar el problema de la dimensionalidad). Como cuarta contribución, presentamos un nuevo framework de estegoanálisis dirigido no supervisado con una precisión superior a la de los métodos supervisados del estado del arte, y que permite eludir el problema del cover source mismatch (CSM). Finalmente, como quinta contribución, presentamos un nuevo enfoque al problema del CSM basado en un conjunto de técnicas de aprendizaje automático conocidas como manifold alignment.

En aquesta tesi, proposem diferents tècniques novedoses per detectar informació oculta (estegoanàlisi) i per ocultar informació (esteganografia). Aquestes tècniques es presenten en una col·lecció de cinc contribucions, que comparteixen un problema comú. La primera contribució presenta tres mètodes diferents per detectar informació oculta fent servir tècniques de desplaçament d'histograma, algunes de les quals són atacs dirigits a esquemes concrets, mentre que les altres són més genèriques. En la segona contribució, en l'àrea de l’aprenentatge automàtic aplicat a l'estegoanàlisi, presentem un nou extractor de caracterı́stiques per detectar informació oculta en el domini espacial, que es pot fer servir com a submodel addicional en el framework de rich models, i que supera la precisió obtinguda pel mètode de l'estat de l'art subtractive pixel adjacency matrix (SPAM) fent servir un nombre inferior de caracterı́stiques. En el mateix context, la tercera contribució és un algoritme esteganogràfic que explota la debilitat d'alguns submodels per tractar amb dades de moltes dimensions (els quals solen utilitzar un llindar per superar el problema de la dimensionalitat). Com a quarta contribució, presentem un nou framework d'estegoanàlisi dirigida no supervisada amb una precisió superior a la dels mètodes supervisats de l'estat de l'art, i que permet eludir el problema del cover source mismatch (CSM). Finalment, com a cinquena contribució, presentem un nou enfocament al problema del CSM basat en un conjunt de tècniques d'aprenentatge automàtic conegudes com a manifold alignment.

In this dissertation, we propose different novel techniques both to detect hidden information (steganalysis) and to hide information (steganography). These techniques are presented in the form of a collection of five contributions, but sharing a common research problem. The first contribution presents three different methods to detect histogram shifting data hiding techniques, some of which are targeted attacks to specific schemes, whereas others are more general. As a second contribution, in the area of machine learning steganalysis, we present a novel feature extractor to detect information hidden in the spatial domain, which can be used as an additional submodel in the rich models framework, and which outperforms the accuracy of the state-of-the-art steganalysis by subtractive pixel adjacency matrix (SPAM) with fewer features. In the same context, the third contribution is a steganographic algorithm that exploits the weakness of some submodels to deal with high dimensional data (which typically use a threshold to overcome the dimensionality problem). As a fourth contribution, we present a new framework for unsupervised steganalysis with accuracy higher than the supervised methods in the state of the art, while bypassing the cover source mismatch (CSM) problem. Finally, as a fifth contribution, we present a novel approach to address the CSM problem based on the set of machine learning techniques known as manifold alignment.

Tecnologies de la informació i de xarxes

Related Organizations
Keywords

processament d'imatges, privadesa, privacidad, esteganografia, esteganografía, estegoanálisis, procesamiento de imágenes, privacy, estegoanàlisi, Aprendizaje automático, aprenentatge automàtic, image processing, 004, machine learning, Tecnologies de la informació i de xarxes, Machine learning, Aprenentatge automàtic, aprendizaje automático, steganography, steganalysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green