
handle: 20.500.14243/412451
This paper presents a sparse factorization for the delay Vandermonde matrix (DVM) and a faster, exact, radix-2, and completely recursive DVM algorithm to realize millimeter wave beamformers in wireless communication networks. The proposed algorithm will reduce the complexity of $N$-beam wideband beamformers from $\mathcal{O}(N^2)$ to $\mathcal{O}(N {\rm\: log\:} N)$. The scaled DVM algorithm is at least 97$\%$ faster than the brute-force scale DVM by a vector product. The signal flow graphs of the scaled DVM algorithm are shown to elaborate the simplicity of the proposed algorithm. The proposed lower complexity DVM algorithm can be used to design simple signal flow graph and realize in very large scale integrated circuit architecture with the significant reduction of chip area and power consumption. Moreover, the realization of the faster DVM algorithm through analog integrated circuits will be addressed . Finally, the proposed DVM algorithm will be utilized to obtain a low-complexity approximate transform for beamforming
Faster and recursive algorithms, Wireless communications, Beamforming, Radix-2, Complexity and performance of algorithms, millimeter wave, Delay Vandermonde matrix
Faster and recursive algorithms, Wireless communications, Beamforming, Radix-2, Complexity and performance of algorithms, millimeter wave, Delay Vandermonde matrix
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
