Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2022
Data sources: IRIS Cnr
CNR ExploRA
Article . 2022
Data sources: CNR ExploRA
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Fast DVM Algorithm for Wideband Time-Delay Multi-Beam Beamformers

Authors: Sirani M Perera; Levi Lingsch; Arjuna Madanayake; Renato J Cintra; Soumyajit Manda; Nicola Mastronardi;

A Fast DVM Algorithm for Wideband Time-Delay Multi-Beam Beamformers

Abstract

This paper presents a sparse factorization for the delay Vandermonde matrix (DVM) and a faster, exact, radix-2, and completely recursive DVM algorithm to realize millimeter wave beamformers in wireless communication networks. The proposed algorithm will reduce the complexity of $N$-beam wideband beamformers from $\mathcal{O}(N^2)$ to $\mathcal{O}(N {\rm\: log\:} N)$. The scaled DVM algorithm is at least 97$\%$ faster than the brute-force scale DVM by a vector product. The signal flow graphs of the scaled DVM algorithm are shown to elaborate the simplicity of the proposed algorithm. The proposed lower complexity DVM algorithm can be used to design simple signal flow graph and realize in very large scale integrated circuit architecture with the significant reduction of chip area and power consumption. Moreover, the realization of the faster DVM algorithm through analog integrated circuits will be addressed . Finally, the proposed DVM algorithm will be utilized to obtain a low-complexity approximate transform for beamforming

Keywords

Faster and recursive algorithms, Wireless communications, Beamforming, Radix-2, Complexity and performance of algorithms, millimeter wave, Delay Vandermonde matrix

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!