
No presente estudo foram aplicados quatro algoritmos de aprendizado de máquina na tarefa de modelagem da relação hipsométrica de povoamentos de Pinus taeda L. em diferentes idades. Centenas de combinações de parâmetros foram testadas para os algoritmos k-vizinhos mais próximos, florestas aleatórias, máquinas de vetores de suporte e redes neurais artificiais. Para seleção do melhor modelo para cada algoritmo, utilizou-se o método de busca em grade combinada ao método de validação cruzada k-fold. Os modelos selecionados foram utilizados para predição da altura total de indivíduos pertencentes a um conjunto de dados independente, e os resultados foram comparados aos obtidos por modelos de regressão linear. Os modelos de aprendizado de máquina apresentaram indicadores estatísticos similares aos modelos de regressão linear, no entanto, tiveram dispersão de resíduos menos tendenciosa, principalmente na análise estratificada por povoamento. A máquina de vetores de suporte e a rede neural artificial foram os modelos mais satisfatórios em precisão e dispersão dos resíduos.
In the present study, four machine learning algorithms were applied in the task of modeling the height-diameter relationship of Pinus taeda L. stands at different ages. Hundreds of parameter combinations were tested for the k-nearest neighbors, random forests, support vector machines, and artificial neural networks algorithms. In order to select the best model for each algorithm, the grid search and the k-fold cross validation methods were applied. The selected models were used to predict the total height of individuals in an independent data set, and the results were compared to those obtained by linear regression models. The machine learning models presented similar statistical indicators to the linear regression models. However, they had less biased dispersion of residues, especially in the stratified analysis by age. The support vector machine and the artificial neural network were the most satisfactory models in precision and dispersion of residues.
Redes neurais artificiais, Artificial intelligence, Busca em grade, Artificial neural networks, Grid search, Validação cruzada, Cross validation, Inteligência artificial
Redes neurais artificiais, Artificial intelligence, Busca em grade, Artificial neural networks, Grid search, Validação cruzada, Cross validation, Inteligência artificial
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
