Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tunning machine learning algorithms for forestry modeling: a case study in the height-diameter relationship

Authors: Costa Filho, Sérgio Vinícius Serejo da; Arce, Julio Eduardo; Montaño, Razer Anthom Nizer Rojas; Pelissari, Allan Libanio;

Tunning machine learning algorithms for forestry modeling: a case study in the height-diameter relationship

Abstract

No presente estudo foram aplicados quatro algoritmos de aprendizado de máquina na tarefa de modelagem da relação hipsométrica de povoamentos de Pinus taeda L. em diferentes idades. Centenas de combinações de parâmetros foram testadas para os algoritmos k-vizinhos mais próximos, florestas aleatórias, máquinas de vetores de suporte e redes neurais artificiais. Para seleção do melhor modelo para cada algoritmo, utilizou-se o método de busca em grade combinada ao método de validação cruzada k-fold. Os modelos selecionados foram utilizados para predição da altura total de indivíduos pertencentes a um conjunto de dados independente, e os resultados foram comparados aos obtidos por modelos de regressão linear. Os modelos de aprendizado de máquina apresentaram indicadores estatísticos similares aos modelos de regressão linear, no entanto, tiveram dispersão de resíduos menos tendenciosa, principalmente na análise estratificada por povoamento. A máquina de vetores de suporte e a rede neural artificial foram os modelos mais satisfatórios em precisão e dispersão dos resíduos.

In the present study, four machine learning algorithms were applied in the task of modeling the height-diameter relationship of Pinus taeda L. stands at different ages. Hundreds of parameter combinations were tested for the k-nearest neighbors, random forests, support vector machines, and artificial neural networks algorithms. In order to select the best model for each algorithm, the grid search and the k-fold cross validation methods were applied. The selected models were used to predict the total height of individuals in an independent data set, and the results were compared to those obtained by linear regression models. The machine learning models presented similar statistical indicators to the linear regression models. However, they had less biased dispersion of residues, especially in the stratified analysis by age. The support vector machine and the artificial neural network were the most satisfactory models in precision and dispersion of residues.

Keywords

Redes neurais artificiais, Artificial intelligence, Busca em grade, Artificial neural networks, Grid search, Validação cruzada, Cross validation, Inteligência artificial

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities