
This report presents probabilistic graphical models that are based on imprecise probabilities using a simplified language. In particular the discussion is focused on credal networks and discrete domains. It describes the building blocks of credal networks algorithms to perform inference and discusses on complexity results and related work. The goal is to have an easy to follow introduction to the topic.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
