Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Estimating Euclidean Distance to Linearity.

Authors: Bogdanov, Andrej; Taschin, Lorenzo;

Estimating Euclidean Distance to Linearity.

Abstract

Given oracle access to a real-valued function on the n-dimensional Boolean cube, how many queries does it take to estimate the squared Euclidean distance to its closest linear function within ε? Our main result is that O(log³(1/ε) ⋅ 1/ε²) queries suffice. Not only is the query complexity independent of n but it is optimal up to the polylogarithmic factor. Our estimator evaluates f on pairs correlated by noise rates chosen to cancel out the low-degree contributions to f while leaving the linear part intact. The query complexity is optimized when the noise rates are multiples of Chebyshev nodes. In contrast, we show that the dependence on n is unavoidable in two closely related settings. For estimation from random samples, Θ(√n/ε + 1/ε²) samples are necessary and sufficient. For agnostically learning a linear approximation with ε mean-square regret under the uniform distribution, Ω(n/√ε) nonadaptively chosen queries are necessary, while O(n/ε) random samples are known to be sufficient (Linial, Mansour, and Nisan). Our upper bounds apply to functions with bounded 4-norm. Our lower bounds apply even to ± 1-valued functions.

Country
Germany
Keywords

statistical estimation, 000, sublinear-time algorithms, regression, property testing, analysis of boolean functions, 004, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green