
Summary: The study of spaces of entire functions was initiated by \textit{V. G. Iyer} [J. Indian Math. Soc., II. Ser. 12, 13--30 (1948; Zbl 0031.12802)] and the space of entire functions represented by Dirichlet series has been studied by \textit{T. Husain} and \textit{P. K. Kamthan} [Collect. Math. 19, 203--216 (1968; Zbl 0172.40001)] and others. \textit{M. D. Patwardhan} [Indian J. Pure Appl. Math. 12, 865--873 (1981; Zbl 0465.46016)] has successfully studied bornological properties of the spaces of entire functions in terms of the coefficients of Taylor series expansions. In this paper we use another norm and study the bornological aspects of the space \(\Gamma\) of all Dirichlet series \(\alpha(s)=\sum^\infty_{n=1}a_n\exp(s\lambda_n)\) of order zero.
Representations of entire functions of one complex variable by series and integrals, Representations of entire functions by series and integrals, Dirichlet series, exponential series and other series in one complex variable, Special classes of entire functions of one complex variable and growth estimates, Topological linear spaces of continuous, differentiable or analytic functions
Representations of entire functions of one complex variable by series and integrals, Representations of entire functions by series and integrals, Dirichlet series, exponential series and other series in one complex variable, Special classes of entire functions of one complex variable and growth estimates, Topological linear spaces of continuous, differentiable or analytic functions
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
